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a b s t r a c t 

Sparse representation and low-rank approximation have recently attracted great interest 

in the field of image denoising. However, they have limited ability for recovering complex 

image structures due to the lack of satisfactory local image descriptors and shrinkage rules 

of transformed coefficients, especially for degraded images with heavy noise. In this paper, 

we propose a novel kernel Wiener filtering model with low-rank approximation for im- 

age denoising. In the model, a shape-aware kernel function is introduced to describe local 

complex image structures. The reference image of kernel Wiener filtering is estimated by 

an optimized low-rank approximation approach, where eigenvalue thresholding is deduced 

for the shrinkage of transformed coefficients using a prior nonlocal self-similarity. Finally 

the optimal kernel Wiener filter is derived for image noise reduction. Our experimental re- 

sults show that the proposed model can faithfully restore detailed image structures while 

removing noise effectively, and often outperforms the state-of-the-art methods both sub- 

jectively and objectively. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Due to imperfect devices, intrinsic thermal fluctuations, and external interference, data acquisition and transmission in-

evitably introduce noises into captured images. Image denoising is an essential tool for recovering the underlying clean

images from the noisy observations. Despite continuous research efforts over the past four decades, it is still a challenging

task to develop effective and robust image denoising techniques that can be applied to a wide range of real-world scenarios.

The existing image denoising methods can be roughly classified into two main categories: spatial-domain methods and

transformed-domain methods. The first category includes partial differential equation (PDE)-based methods [28,31,39,40] ,

spatially varying convolution methods [26,29] , and nonlocal means-based methods [3,7,12,14,15,19,37] . In PDE-based meth-

ods, a total variation (TV) filter [28,31,39,40] is often introduced to remove noise while preserving edges. However, TV
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assumes piecewise smoothness of underlying images, which often cannot be satisfied for natural images and results in un-

desired staircase effect and loss of structural details. The spatially varying convolution methods convolve a noisy image with

a pointwise local geometry-driven kernel function to remove noise while preserving local structures. However, the selection

of optimal kernel functions is often challenging for such methods. Different from the above-mentioned local smoothing fil-

ters, the nonlocal means-based methods first introduced by Buades et al. [3] exploit the nonlocal self-similarity of spatial

patterns within natural images for noise removal. However, such method ignores a prior knowledge on local image struc-

tures. 

Compared to the above spatial-domain methods, noise and signal can often be more easily separated in a trans-

formed domain. Thus, transformed-domain denoising methods have received great attention in recent years, which in-

clude wavelet transform-based [7,13,18,20,27] , sparse representation-based [5,9,11,15,16,33,34,37,38] , and deep learning-based

methods [6,8,36] . The wavelet transform-based methods [27] decompose an input noisy image into multiple scales and

then wavelet coefficients at each scale are shrunk towards zero to suppress noise in the transform domain. However, as

the wavelet basis is fixed, such methods cannot adaptively represent various structural patterns of natural images, which

inevitably lead to noticeable visual artifacts. Sparse representation-based methods overcome this issue by learning data-

adaptive bases for image denoising [9,10,15,21,37] . However, these methods generally involve solving a complex optimiza-

tion problem and manually tuning parameters to approach the optimal performance. To overcome the limitations of model-

based methods mentioned above, deep learning-based methods learn image models from big training data and then use the

trained models for image denoising. Such methods can achieve highly accurate results with high computational efficiency

[23,24] . However, these methods need large training data and often produce a significant drop in denoising performance

when there are discrepancies between test and training images. 

In this paper, we propose a novel kernel Wiener filtering model (KWFM) to faithfully restore detailed image structures

while further improving the image denoising performance. The reference images are estimated by an optimized low-rank

approximation approach. The main contributions of this work are threefold: 1) The shape-adaptive kernel function is intro-

duced as a local image descriptor to construct the optimal kernel Wiener filter with minimum mean square error; 2) The

constrained covariance matrix minimization is modeled to estimate the reference image by optimized low-rank approxi-

mation (OLRA); 3) Eigenvalue thresholding is derived for the shrinkage of transformed coefficients to reduce the estimation

bias of the low-rank approximation. The proposed algorithm was evaluated in comparison with the current popular methods

both qualitatively and quantitatively on numerous test images. 

The remainder of this paper is organized as follows. Section 2 presents the overview of our KWFM and elaborates the

model solutions with an emphasis on the closed-form or convergent solutions to its subproblems. Section 3 shows the

experimental results. The discussions are given in Section 4 and conclusions are drawn in Section 5 . 

2. Method 

Throughout this paper, we denote scalars, vectors and matrices by non-boldfaced, boldfaced lower-case, and boldfaced

upper-case letters, respectively. 

2.1. Image degradation model 

In the presence of noise, the observed images in denoising studies are often represented by the following simplified

model [3] : 

Y = X + υ, (1)

where Y is the observed image, X is the clean image, and υ represents Gaussian noise. The goal of image denoising is to

obtain the best estimate of the clean image X from the observed noisy image Y . 

2.2. Kernel Wiener filtering model 

The images generally contain complex structures, such as edges, textures and smooth regions. These structures are cor-

rupted by noise in the noisy images. However, the existing denoising methods often fail to recover detailed image structures

while removing noise. The conventional Wiener filtering (CWF) as the second stage of BM3D [7] is a commonly used method

to further improve the denoising performance, but it may often fail when integrated with the best state-of-the-art meth-

ods, e.g. WNNM [15] . To faithfully restore detailed image structures while further improving the denoising performance, we

propose a novel kernel Wiener filtering (KWF) model by incorporating the shape-aware kernel function to represent local

complex image structures. Let y i = C i Y and r i = C i R denote an image patch extracted from the noisy image Y and the refer-

ence image R at pixel i , respectively, where C i is a matrix extracting a patch from the image at pixel i . Then the proposed

KWFM method can be formulated as follows: 

ˆ X = 

(∑ 

i 
C 

′ 
i C i 

)−1 ∑ 

i 
C 

′ 
i 

(
ˆ h i ∗ ( k i ◦ y i ) / k i 

)
, (2)

where ˆ X is the denoised image regarded as the estimate of the clean image X , C 

′ 
i 

is the transpose matrix of C i , ˆ h i of size

L × L is the optimal kernel Wiener filter H at pixel i , ∗ denotes the convolution operation, ◦ denotes the Hadamard product,
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/ represents the Hadamard division, and k i is the shape-aware kernel function K at pixel i that implements data mapping

from the signal space to its feature space. The optimal kernel Wiener filter ˆ h i in Eq. (2) is obtained as: 

ˆ h i = min E 
[
e 2 i ( j ) 

]
, 

with e i = k i ◦ r i − h i ∗ ( k i ◦ y i ) , (3) 

where E [ · ] denotes the expected value, and e i ( j ) is the j -th element of the patch error e i . Considering the estimation bias of

the conventional low-rank estimators in obtaining the reference images [1] , e.g. singular value thresholding (SVT) [4,9] , we

propose an OLRA approach based on the minimization of constrained covariance matrix nuclear norm to increase the esti-

mation accuracy of the reference images. Specifically, for each target patch of an input noisy image, the structural similarity

is exploited to construct a group of similar patches. Then noise in each group of similar patches is reduced by eigenvalue

thresholding. The resulting patches are collected to estimate the reference image of KWF by the weighted averaging method.

For grayscale images, the proposed method can be applied directly to the noisy input images. For color images with red-

green-blue (RGB) color components, the three components are typically highly correlated. Therefore, an RGB image is first

transformed into the decorrelated YUV image in terms of one luminance (Y) and two chrominance components (U and V) by

forward color space conversion. Then the proposed method are separately applied to each of the decorrelated YUV images.

Finally, the denoised RGB images are reconstructed from the denoised YUV images by inverse color space conversion. 

2.3. KWFM algorithm implementation 

The KWFM algorithm consists of first estimating the reference image via optimized low-rank approximation, then design

the kernel Wiener filter via least square minimization, and finally convoluting the kernel Wiener filter with the kernelized

noisy images to obtain the denoised image. 

2.3.1. Optimized low-rank approximation 

In the first stage, we need to get an accurate estimate of the reference images for the design of the optimal kernel

Wiener filter. For each target patch y i of size p × p centered at pixel i in the noisy image Y ∈ R 

M×N , the similar patches of y i 
are found across a sliding search window of size W × W in the noisy image Y by the block-matching method [7,15,37] . These

similar patches are collected to form a reshaped matrix G i = 

[
y i, 1 , y i, 2 , . . . , y i,Q 

]
∈ R 

p 2 ×Q , where Q is the number of similar

patches. The noise model in Eq. (1) can be rewritten in the patch-based representation as follows: 

G i = O i + ς i , (4) 

where G i , O i and ς i denote the patch matrices from the noisy image Y , the clean image X and the noise υ, respectively. 

In the past decade, the singular value soft thresholding method [4,9,15] has been widely studied for the low-rank ap-

proximation problem. However, the estimation bias of the soft thresholding affects the accuracy of the reconstructed signals

[1] . On the other hand, the discontinuity of the hard thresholding may cause oscillation of the reconstructed signals. It was

observed that the region covariance descriptor achieves superior performance in object detection and classification [30] . To

estimate the singular values accurately in the low-rank approximation, we propose an OLRA method based on the con-

strained nuclear norm minimization by introducing the structured sparsity [38] and covariance matrices [2] . OLRA estimates

each patch group O i in the reference image R as follows: 

ˆ O i = min 

O i 

∥∥O i O i 
′ ∥∥

∗, 

s.t. ‖ 

G i − O i ‖ 

2 
F < ξ , 

(5) 

where the nuclear norm ‖ · ‖ ∗ is equivalent to the group sparsity constraint [4,9] , ‖ · ‖ F is the Frobenius norm, and ξ is an

error constraint. In implementation, ξ is not set explicitly. Instead, Eq. (5) is solved iteratively to estimate the reference

image R . The iteration is terminated when the iteration number τ reaches a maximum value T . The value of ξ in Eq. (5) is

related to the total number of iterations T . At each iteration τ , the eigenvalue coefficients of each similar patch group G i 
( τ ) 

are sequentially shrunk to minimize the representation error by SVD. Specifically, at the beginning of each iteration τ , the

noisy image Y 

( τ ) and its noise deviation σ τ are separately updated as follows: 

Y 

( τ ) = 

ˆ R 

( τ ) + ε 
(
Y − ˆ R 

( τ ) 
)
, (6) 

στ = 

√ 

max 
(
σ 2 

υ − σ 2 
RMSE 

, 0 

)
, (7) 

where ε is a control parameter, σ 2 
υ is the noise variance of the input noisy image Y , and σ 2 

RMSE 
is the mean squared error

between Y and Y 

( τ ) . Note that Y is used as the initial estimate ˆ R 

( τ ) of the reference image at τ = 0 . By using the itera-

tive projected gradient-descent algorithm [4,17] , Eq. (5) is solved with the eigenvalue thresholding (EVT) for shrinking the

eigenvalue coefficients �i 
( τ ) of G i 

( τ ) as follows: 

ˆ �( τ ) 
i 

= 

√ 

max 

((
�i 

( τ ) 
)2 − Qσ 2 

τ , 0 

)
, (8) 
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where the shrinkage amount Qσ 2 
τ is adopted based on the relationship between the eigenvalues for the noisy and clean

images as provided in the Appendix A . Our EVT has higher estimation accuracy with less bias than the soft thresholding

used in SAIST [9] for signal recovery, as shown in the Experimental Results Section. 

Let U i 
( τ ) and V i 

( τ ) denote a p 2 × p 2 unitary matrix and a Q × Q unitary matrix in the SVD transform of G i 
( τ ) , respectively.

The shrunk singular values ˆ �( τ ) 
i 

are calculated from Eq. (8) , and then used to construct the denoised similar patch group

by the inverse SVD transform as follows: 

ˆ O 

( τ+1 ) 
i 

= U i 
( τ ) ˆ �( τ ) 

i 
V i 

′ ( τ ) 
. (9)

At the end of each iteration, as the different groups of similar patches containing an identical pixel may have different

ranks, an estimation bias of the pixel will be produced in the reconstructed image. To improve the estimation accuracy of

the ideal reference image R , we employ a weighted averaging method to reconstruct the whole estimated image ˆ R 

( τ+1 )

by aggregating all denoised patch groups ˆ O 

( τ+1 ) 
i 

. Like BM3D [7] and APCAS [37] , we assign an empirical weight to each

denoised patch group 

ˆ O 

( τ+1 ) 
i 

. The empirical weight w i is given as 

w i = 

{
1 − Q τ /Q, Q τ < Q 

1 /Q, Q τ = Q 

, (10)

where Q τ is the estimated rank of each patch group matrix G 

( τ ) . Finally, the whole estimated reference image is built by

the weighted averaged method as follows: 

ˆ R 

( τ+1 ) 
k 

= 

( ∑ 

i, j 

w i ̂
 O 

( τ+1 ) 
i, j,k 

) /( ∑ 

i, j 

w i 

) 

, (11)

where R k refers to pixel k in the reference image, and 

ˆ O i, j,k refers to the denoised image intensity of pixel k in the j th patch

of patch group i , and the summation is carried out over all patches that overlap with pixel k . 

The above procedure is repeated until the convergence condition (e.g., the maximum number of iterations) is achieved.

The final estimated reference image ˆ R is used to design the optimal kernel Wiener filter at the second stage of our KWFM

algorithm. 

2.3.2. Kernel Wiener filtering 

As mentioned above, CWF performance often deteriorates when combined with state-of-the-art denoising methods (e.g.,

WNNM [15] ). To restore complex image structures, such as edges and textures, Yamashita et al. [35] proposed a KWF method

by using the first-order approximation of the Gaussian kernel function. But they [35] did not further investigate the opti-

mization of KWF, such as the kernel shape and the reference image estimation. To further improve the KWF, we introduce

the shape-aware kernel function to represent complex image structures, and estimate the reference image R by the OLRA

described above. Incidentally, our KWF amounts to the dual-domain filtering [21,22] , except that a different shrinkage func-

tion is applied to the Fourier coefficients. 

Since the bilateral function [29] can adaptively represent the geometrical shape of local image regions effectively, we

adopt the bilateral function as the shape-aware kernel function K , which is based on the similarity measure between the

target pixel i and its neighboring pixel q in the reference image R . Specifically, the shape-aware bilateral kernel centered at

pixel i is constructed from the reference image as follows: 

k i,q = exp 

(
−| i − q | 2 

2 σ 2 
s 

)
exp 

(
− ( r i − r q ) 

2 

βr σ 2 
υ

)
, (12)

where r i and r q are the intensity of pixels i and q , respectively. σ 2 
υ is the noise variance of the input noisy image Y . σ s and

βr are smoothing parameters controlling the Gaussian functions in spatial and intensity domains, respectively. For visual

illustration, Fig. 1 shows the three-dimensional shaded surface of the shape-aware bilateral kernel function on a test image.

With the shape-aware bilateral kernel defined in Eq. (12) and estimated reference images, the kernel Wiener filter can

be obtained from Eq. (3) . To reduce the high computational cost, we can use the Fourier transform to calculate the kernel

Wiener filter. Specifically, for each pixel i and its noisy patch y i of size L × L centered at pixel i in the noisy image Y ∈ R 

M×N ,

the element-wise product of the corresponding estimated reference patch ̂  r i and the related kernel patch k i is first converted

into Fourier coefficients by the forward Fourier transform. According to the Wiener-Hopf equation, the kernel Wiener filter

in Fourier domain for each patch y i of the noisy image Y can be expressed as 

F 

(
ˆ h i 

)
= 

∣∣F 

(
k i ◦ ˆ r i 

)∣∣2 ∣∣F 

(
k i ◦ ˆ r i 

)∣∣2 + β f σ
2 
i 

, (13)

where F ( ·) denotes the discrete Fourier transform (DFT), β f is the shrinkage parameter, and σ 2 
i 

is the variance of Fourier

coefficients of the kernel patch k i : 

σ 2 
i = σ 2 

v 

∑ 

q ∈ 	i 

k 2 i,q , (14)
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Fig. 1. Three-dimensional shaded surface of the shape-aware bilateral kernel function centered at a target pixel from the test image ‘house’ . The target 

pixel is denoted in red, while its local region is labeled in the blue box. 

Algorithm 1 Pseudocodes of the KWFM Algorithm 

Input: a noisy image Y . 

Output: a denoised image ˆ X . 

I. Initialize the parameters T , Q , ε, L , σs , βr and β f ; 

II. Perform the forward color space transformation; 

III. OLRA: Initialize ˆ R 

( 0 ) = Y , and then for each iteration τ = 0 to T do 

• Update Y 

( τ ) and στ using Eqs. (6) and (7); 
• For each patch y ( 

τ ) 
i 

in Y 

( τ ) do 

1) Find G 

( τ ) by the block-matching search; 

2) Compute the SVD transform of G 

( τ ) ; 

3) Shrink the eigenvalue coefficients using Eq. (8); 

4) Compute ˆ O 

( τ+1 ) 
i 

by the inverse SVD; 

• Update ˆ R 

( τ+1 ) by Eqs. (10) and (11); 

IV. KWF: for each target patch y i centered at pixel i in Y do 

• Compute the kernel k i from 

ˆ R using Eq. (12); 
• Compute σ 2 

i 
, ȳ i , r̄ i , ˜ H i, f , and 

˜ Y i, f ; 

• Estimate each pixel value ˆ x i of ˆ X using Eq. (15); 

V. Construct the denoised image ˆ X . 

 

 

 

 

where 	i denotes a coordinate set of neighboring pixels around the pixel i . 

Then, for each pixel i and its noisy patch y i of size L × L in the noisy image Y , the corresponding denoised pixel value ˆ x i 
is obtained from the Fourier coefficients of y i over the frequency domain as follows: 

ˆ x i = 

1 

L 2 

∑ 

f∈ 
i 

ˆ H i, f Y i, f , (15) 

where 
i denotes the local frequency domain, f is a coordinate in the frequency domain, ˆ H i, f denotes the Fourier transform

of ˆ h i , and Y i, f is the Fourier transform of k i ◦y i . 

Finally, the whole denoised grayscale image is constructed by aggregating all the denoised pixels. For color image denois-

ing, after removing noise of each channel of the decorrelated color image, the denoised color image is obtained by inverse

color space conversion. The proposed KWFM algorithm is summarized in Algorithm 1 . 

3. Experimental results 

In this section, we first present the test data and parameter settings of our KWFM algorithm. Then we assess the impact

of each KWFM stage on the denoising performance and compare KWFM with competing methods. 
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Table 1 

Chosen parameter values of the KWFM algorithm. Here the 

symbol ‘G/C’ is the abbreviation of grayscale/color images. 

Noise level p Q T β r (G/C) β f (G/C) 

συ � 20 6 70 8 0.81/2.2 1.6/0.8 

20 < συ � 40 8 90 10 0.32/2.0 1.4/1.0 

40 < συ � 60 8 105 14 0.28/1.1 1.2/1.2 

συ > 60 9 130 14 0.24/0.6 1.0/1.2 

Table 2 

Averaged PSNR (dB) and SSIM results of these different methods for the grayscale image dataset ‘BSD68’ with various noise levels. The best 

results are highlighted in boldface. 

Noise level BM3D [7] SAIST [9] DDID2 [22] WNNM [15] DnCNN-S [36] WCWF OLRA KWFM 

10 33.32/.9164 33.44/.9176 33.37/.9196 33.59/.9205 33.88/.9270 33.50/.9199 33.60/.9212 33.62/.9233 

30 27.76/.7736 27.82/.7731 27.90/.7740 27.99/.7817 28.36/.7999 27.90/.7801 27.99/.7829 28.09/.7913 

50 25.62/.6869 25.65/.6 86 8 25.75/.6827 25.87/.6989 26.23/.7189 25.76/.6973 25.85/.6946 26.02/.7080 

70 24.44/.6331 24.46/.6396 24.46/.6203 24.64/.6466 24.90/.6567 24.52/.6452 24.56/.6384 24.77/.6489 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Dataset 

To verify the performance of KWFM both subjectively and objectively, we implemented numerous experiments on some

widely used test images chosen from publicly available datasets [25] 1 , 2 . The test images consisted of two grayscale image

datasets (i.e., Set11 and BSD68 [6,36] ) and two color image datasets (i.e., Set12 and CBSD68 [6,36] ). According to the image

degradation model defined in Eq. (1) , these datasets were synthetically corrupted by the additive white Gaussian noise

(AWGN) with different noise levels to simulate the noisy observations. 

3.2. Experimental settings 

The convergence condition is defined as the iteration number equals to a predetermined maximum number. The param-

eters for OLRA ( ε, W , p , Q and T ) were manually tuned to get an accurate estimate of the reference image. Then, the other

four parameters L , σ s , βr and β f were empirically estimated to ensure that the proposed method achieves approximately

the best performance. In our experiments, the basic parameters of KWFM were as follows: ε = 0 . 1 , W = 61 , L = 83 , σs = 20

and the other parameters are shown in Table 1 . To verify the robustness of OLRA and KWF against the changes of these

parameters, we selected one test image ‘Montage’ and fixed the noise deviation to συ = 50 . By changing a parameter while

keeping all other parameters at their current values, we calculated the PSNR values of the reference images and denoised

images as a function of the parameter value. The results are given in Fig. 2 . Fig. 2 shows that the parameters p , Q , ε and

βr have a strong influence on the PSNR values, while the other parameters only change the PSNR value by < 0.2 dB. As

T increases, PSNR of OLRA initially increases but then converges to a constant value c . The impact of these parameters on

other images and noise levels are similar to the PSNR plots in Fig. 2 . 

3.3. Results for grayscale images 

We first carried out an experiment to separately assess the impacts of the two stages of the proposed method. For

quantitative evaluation, two image quality metrics: the Structural SIMilarity (SSIM) [32] and PSNR, were used to measure

the similarity between the denoised image and the original clean image. SSIM [32] is more reliable than PSNR for visual

quality assessment. In this experiment, we calculated the PSNR and SSIM of the images output from the two stages of our

KWFM methods (labeled as ‘OLRA’ and ‘KWFM’, respectively), and compared them with with WNNM [15] and a united

framework (denoted as WCWF) consisting of two successive stages: WNNM [15] and CWF, where the output of WNNM

[15] is used as the reference image of CWF. Table 2 and Table 3 give the resulting image quality metrics for two sets

of grayscale images (i.e., BSD68 and Set11), respectively. Fig. 3 gives a visual comparison of the denoised images for two

test images ‘House’ and ‘Montage’ corrupted by the Gaussian noise with standard deviations of 50 and 100, respectively.

Table 2 to 3 and Fig. 3 show that while WCWF often has better SSIM and visual results than WNNM [15] , WCWF is mostly

worse than WNNM [15] in PSNR, indicating that CWF as the second stage of WCWF, BM3D [7] and APCAS [37] is not

suitable for improving the performance of image denoising. Furthermore, although our OLRA sometimes achieves higher

PSNR values than WCWF and WNNM [15] , it usually has worse SSIM values and visual results than WCWF and WNNM [15] .

However, our KWFM generally achieves better PSNR/SSIM results and less visual artifacts than OLRA, WCWF and WNNM
1 Allan Weber, The USC-SIPI Image Database, March 31, 2015, http://sipi.usc.edu/database/ . 
2 Rich Franzen, Kodak Lossless True Color Image Suite, March 31, 2013, http://r0k.us/graphics/kodak/ . 

http://sipi.usc.edu/database/
http://r0k.us/graphics/kodak/
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Fig. 2. PSNR values of the denoised images separately obtained by our OLRA and KWF against the changes of key parameters for the image ‘Montage’ 

corrupted by the Gaussian noise with standard deviation 50. (a) ∼ (d) for OLRA, and (e) ∼ (h) for KWF. 

Fig. 3. Visual comparison of the denoised results obtained by WNNM [15] and our proposed methods. The grayscale image ‘House’ is corrupted by the 

Gaussian noise with standard deviation 50 in the top row, whereas the grayscale image ‘Montage’ is corrupted by the Gaussian noise with standard deviation 

100 in the bottom row. From left to right: (a) Truth, (b) WNNM [15] (Top: PSNR (dB)/SSIM = 30.32/.8222, Bottom: PSNR (dB)/SSIM = 24.16/.7766), (c) WCWF 

(Top: PSNR (dB)/SSIM = 30.13/.8241, Bottom: PSNR (dB)/SSIM = 24.06/.7739), (d) OLRA (Top: PSNR (dB)/SSIM = 30.32/.8163, Bottom: PSNR (dB)/SSIM = 

24.21/.7830), and KWFM (Top: PSNR (dB)/SSIM = 30.56/.8305 , Bottom: PSNR (dB)/SSIM = 24.93/.8136 ). CWF often deteriorates the performance when 

combined with state-of-the-art denoising methods including WNNM [15] , while our KWF still exhibits superior robustness and denoising performance. 
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Table 3 

PSNR (dB) and SSIM results of these different methods for the grayscale image dataset ‘Set11’ with various noise levels. The best results are 

highlighted in boldface. 

Noise level BM3D [7] SAIST [9] DDID2 [22] WNNM [15] DnCNN-S [36] WCWF OLRA KWFM 

Barbara 10 34.98/.9420 35.24/.9425 34.70/.9417 35.51 / .9448 34.60/.9399 35.32/.9438 35.46/.9447 35.31/.9436 

30 29.81/.8687 30.14/.8781 29.99/.8791 30.31/.8810 28.92/.8524 30.27/.8816 30.34/.8824 30.37/.8864 

50 27.23/.7946 27.51/.8040 27.47/.8062 27.79/.8199 26.22/.7693 27.82 /.8231 27.58/.8080 27.77/ .8237 

70 25.47/.7261 25.87/.7487 25.78/.7400 26.17/.7631 23.97/.6680 26.16/ .7656 26.00/.7534 26.19 /.7655 

Boats 10 33.92/.8878 33.91/.8860 33.84/.8880 34.09/.8900 34.09/.8897 34.00/.8877 34.12 / .8909 34.05/.8890 

30 29.12/.7795 28.98/.7696 29.07/.7731 29.24/.7803 29.38/.7853 29.21/.7825 29.26/.7812 29.32/.7841 

50 26.78/.7053 26.63/.6922 26.73/.6923 26.97/.7083 27.20/.7188 26.93/.7130 26.95/.7034 27.12/.7144 

70 25.40/.6526 25.28/.6469 25.27/.6342 25.57/.6573 25.77/.6647 25.52/.6622 25.46/.6514 25.64/.6588 

C.man 10 34.18/.9319 34.30/.9345 34.22/.9340 34.44/.9332 34.68/.9372 34.32/.9334 34.49/.9340 34.53/.9368 

30 28.64/.8375 28.36/.8253 28.86/.8352 28.80/.8401 29.27/.8573 28.68/.8417 28.76/.8409 28.99/.8511 

50 26.12/.7824 26.14/.7765 26.50/.7779 26.42/.7842 27.02/.8058 26.27/.7856 26.46/.7784 26.78/.7984 

70 24.61/.7424 24.58/.7371 24.84/.7287 24.85/.7439 25.40 /.7641 24.75/.7471 24.82/.7453 25.24/ .7653 

Couple 10 34.04/.9094 33.96/.9047 33.99/.9075 34.14/.9101 34.32/.9138 34.08/.9098 34.19/.9109 34.21/.9112 

30 28.87/.7947 28.72/.7820 28.80/.7849 28.98/.7953 29.21/.8034 28.97/.7986 28.99/.7965 29.11/.8014 

50 26.46/.7068 26.30/.6943 26.32/.6894 26.65/.7136 26.90/.7249 26.66/.7199 26.61/.7084 26.81/.7213 

70 25.00/.6406 24.87/.6352 24.75/.6153 25.17/.6520 25.30/.6546 25.18/.6598 25.03/.6428 25.25/.6538 

F.print 10 32.46/.9688 32.69/.9699 31.88/.9661 32.81/.9708 32.62/.9700 32.74/.9706 32.82/.9709 32.69/.9706 

30 26.83/.8936 26.95/.8935 26.47/.8824 26.99/.8961 26.59/.8915 26.99/.8970 27.02 /.8968 26.99/ .8992 

50 24.53/.8308 24.52/.8254 24.17/.8120 24.67 /.8353 24.10/.8217 24.65/ .8375 24.51/.8281 24.54/.8339 

70 23.12/.7802 23.17/.7787 22.79/.7557 23.31 /.7890 22.39/.7497 23.26/ .7928 23.08/.7732 23.11/.7769 

Hill 10 33.62/.8834 33.65/.8831 33.66/.8842 33.79/.8869 33.86/.8903 33.71/.8856 33.83/.8879 33.85/.8888 

30 29.16/.7504 29.06/.7409 29.07/.7395 29.25/.7514 29.29/.7534 29.22/.7533 29.27/.7522 29.37/.7560 

50 27.19/.6747 27.04/.6616 27.08/.6600 27.34/.6767 27.44/ .6831 27.32/.6814 27.30/.6733 27.4 8 /.6 830 

70 25.93/.6226 25.86/.6184 25.83/.6063 26.14/.6296 26.22/.6320 26.11/.6347 26.02/.6232 26.22 /.6289 

House 10 36.71/.9218 36.66/.9187 36.68/.9269 36.95/.9236 36.48/.9108 36.93/.9263 36.97/.9241 37.02/.9276 

30 32.09/.8480 32.30/.8508 32.12/.8475 32.52/.8514 32.24/.8498 32.41/.8524 32.50/.8517 32.59/.8548 

50 29.69/.8122 30.17/.8240 29.41/.7983 30.32/.8222 30.00/.8180 30.13/.8241 30.32/.8163 30.56/.8305 

70 27.91/.7747 28.41/.7960 27.51/.7536 28.60/.7957 28.19/.7805 28.36/.7958 28.68/.7996 28.86/.8077 

Lena 10 35.93/.9166 35.90/.9168 35.93/.9179 36.06/.9180 36.18/.9188 36.02/.9170 36.07/.9183 36.03/.9176 

30 31.26/.8449 31.27/.8486 31.49/.8525 31.43/.8498 31.59 /.8543 31.46/.8513 31.48/.8515 31.53/ .8552 

50 29.05/.7994 29.01/.8046 29.20/.8026 29.25/.8053 29.39 /.8116 29.27/.8090 29.14/.7966 29.37/ .8123 

70 27.57/.7603 27.55/.7729 27.62/.7586 27.85/.7739 27.85/.7701 27.80/.7761 27.76/.7727 28.04/.7849 

Man 10 33.98/.9076 34.12/.9092 34.13/.9109 34.23/.9113 34.44/.9154 34.14/.9104 34.26/.9118 34.28/.9127 

30 28.86/.7802 28.81/.7741 28.92/.7752 29.00/.7830 29.30/.7953 28.94/.7837 29.04/.7842 29.13/.7887 

50 26.81/.7056 26.68/.6977 26.77/.6946 26.94/.7091 27.24/.7217 26.87/.7101 26.94/.7052 27.10/.7160 

70 25.56/.6548 25.42/.6526 25.44/.6396 25.68/.6604 25.91/.6681 25.59/.6622 25.63/.6573 25.82/.6660 

Montage 10 37.35/.9679 37.46/.9681 37.73/.9690 37.84/.9692 37.60/.9690 37.61/.9695 37.83/.9688 37.93/.9697 

30 31.38/.9114 31.06/.9195 32.07 /.9198 31.65/.9183 31.87/.9235 31.57/.9209 31.47/.9192 31.97/ .9271 

50 27.90/.8614 28.00/.8763 28.73/.8671 28.27/.8741 28.98/.8814 28.07/.8751 28.37/.8679 29.11/.8874 

70 25.92/.8116 25.84/.8300 26.40/.8148 26.11/.8303 26.69/.8333 26.03/.8304 26.13/.8370 27.08/.8583 

Peppers 10 34.68/.9282 34.82/.9288 34.76/.9290 34.95/.9300 35.12/.9318 34.80/.9286 34.99/.9305 34.96/.9304 

30 29.28/.8505 29.24/.8536 29.54/.8552 29.49/.8557 29.91/.8647 29.42/.8562 29.49/.8566 29.58/.8601 

50 26.68/.7936 26.73/.7993 26.92/.7942 26.91/.7999 27.32/.8106 26.81/.7969 26.99/.7995 27.13/.8088 

70 25.07/.7477 24.97/.7479 25.07/.7389 25.26/.7525 25.48/.7598 25.23/.7473 25.34/.7617 25.53/.7714 

Average 10 34.71/.9241 34.79/.9238 34.68/.9250 34.98/.9262 34.91/.9261 34.88/.9257 35.00 /.9266 34.99/ .9271 

30 29.57/.8327 29.54/.8305 29.67/.8313 29.79/.8366 29.78/.8392 29.74/.8381 29.78/.8376 29.91/.8422 

50 27.13/.7697 27.16/.7687 27.21/.7631 27.41/.7771 27.44/.7788 27.34/.7796 27.38/.7714 27.61/.7845 

70 25.07/.7477 25.62/.7240 25.57/.7078 25.88/.7316 25.74/.7223 25.82/.7340 25.81/.7289 26.09/.7398 

 

 

 

 

 

 

 

 

[15] . This experiment demonstrates that both stages of the proposed method are necessary and generally lead to significant

improvements in PSNR/SSIM and visual quality. 

Next, we comprehensively compared the KWFM performance with the state-of-the-art methods, such as BM3D 

3 [7] ,

SAIST [9] , DDID2 4 [22] , WNNM 

5 [15] and DnCNN-S 6 [36] . The experimental results of all the benchmark methods were

produced using the source codes or executable programs with default parameters released by the authors [7,9,15,22,36] . The

calculated image quality metrics are also given in Table 2 to Table 3 , which show that DnCNN-S [36] achieves the best

averaged PSNR/SSIM results and KWFM is the second best for one dataset ‘BSD68’. Furthermore, KWFM is the best for the

other dataset ‘Set11’. 

Fig. 4 and Fig. 5 give visual comparisons of denoised images for two test grayscale images from the dataset ‘BSD68’.

Fig. 6 , Fig. 7 and Fig. 8 give visual comparisons of denoised images for test grayscale images ‘Boats’ , ‘Hill’ and ‘House’ from the
3 http://www.cs.tut.fi/ ∼foi/GCF-BM3D/BM3D.zip . 
4 http://www.cgg.unibe.ch/publications/dual- domain- filtering/ddf _ code.zip . 
5 http://www4.comp.polyu.edu.hk/ ∼cslzhang/code/WNNM _ code.zip . 
6 https://github.com/cszn/DnCNN . 

http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip
http://www.cgg.unibe.ch/publications/dual-domain-filtering/ddf_code.zip
http://www4.comp.polyu.edu.hk/~cslzhang/code/WNNM_code.zip
https://github.com/cszn/DnCNN
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Fig. 4. Visual comparison of the denoised results obtained by BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] , DnCNN-S [36] and our KWFM for one example 

from the grayscale image dataset ‘BSD68’ corrupted by the Gaussian noise with standard deviation 30. As test images are consistent with the patterns of 

training images, DnCNN-S [36] recovers more detailed structures and has better denoising results than our KWFM for one grayscale test image from the 

dataset ‘BSD68’. Our KWFM is the second best and approaches to deep learning based methods including DnCNN-S [36] . 

Table 4 

Averaged PSNR (dB) and SSIM results of these different methods for the color 

image dataset ‘CBSD68’ with variant noise levels. The best results are high- 

lighted in boldface. 

Noise level BM3D [7] DDID2 [22] DnCNN-S [36] KWFM 

10 35.90/.9510 35.43/.9499 36.36/.9559 35.98/.9531 

30 29.72/.8421 29.88/.8442 30.41/.8645 30.07/.8548 

50 27.37/.7624 27.54/.7604 27.97/.7928 27.60/.7735 

70 26.00/.7069 26.07/.6943 26.55/.7404 26.17/.7174 

 

 

 

 

 

 

 

 

 

dataset ‘Set11’. Fig. 4 to Fig. 5 shows that DnCNN-S [36] recovers more detailed structures and has better denoising results

than BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] and our KWFM for the dataset ‘BSD68’. However, Fig. 6 to Fig. 8 shows

that KWFM generally achieves better visual results with less artifacts than the competing methods for test grayscale images

from the dataset ‘Set11’. 

3.4. Results for color images 

For the color images, we adopted the color image datasets ‘CBSD68’ and ‘Set12’ to compare KWFM with the state-of-

the-art methods, such as BM3D [7] , DDID2 [22] , DnCNN-S [36] . In this experiment, the results of the existing methods were

produced with the default color space conversion provided by the authors [7,22,36] . Table 4 and 5 show the PSNR/SSIM

results of these methods for ‘CBSD68’ and ‘Set12’, respectively. Here both PSNR (dB) and SSIM were computed as the mean

score from the three channels between the denoised RGB image and the ground-truth RGB image. From Table 4 to Table 5 ,

DnCNN-S [36] has the highest averaged PSNR/SSIM and our KWFM is the second best for one dataset ‘CBSD68’, but our
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Fig. 5. Visual comparison of the denoised results obtained by BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] , DnCNN-S [36] and our KWFM for another 

example from the grayscale image dataset ‘BSD68’ corrupted by the Gaussian noise with standard deviation 50. As test images are consistent with the 

patterns of training images, DnCNN-S [36] recovers more detailed structures and has better denoising results than our KWFM for another grayscale test 

image from the dataset ‘BSD68’. Our KWFM is the second best and approaches to deep learning based methods including DnCNN-S [36] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KWFM achieves better results than the competing methods for the other dataset ‘Set12’. Besides the quantitative evaluation,

subjective visual assessments were carried out to further inspect the effectiveness of our KWFM. Fig. 9 and 10 show the

denoising results for two color images from the dataset ‘CBSD68’ and two color images ‘Tiffany’ and ‘House’ from the dataset

‘Set12’, respectively. Fig. 9 shows that DnCNN-S [36] has the best visual results for the dataset ‘CBSD68’. However, Fig. 10

shows that our KWFM achieves better visual results with more details than BM3D [7] , DDID2 [22] and DnCNN-S [36] for

the dataset ‘Set12’. 

The above quantitative and qualitative evaluations demonstrate that our KWFM can not only remove the noise effectively

but also recover fine structures and sharp edges. Moreover, our KWFM can generally achieve less visual artifacts and color

distortion than the leading state-of-the-art methods, except for DnCNN-S [36] in certain cases. The code for our KWFM will

be provided on the website 7 in the spirit of reproducible research. 

3.5. Computational complexity 

We further analyzed the computational complexity of KWFM, which was implemented in Matlab 8.2 running in Windows

10 operating system on ThinkPad S1 Yoga with 4 Intel(R) Core(TM) i7-4510U CPUs @2.00GHz 8.00GB RAM. For the evaluation

of the computational complexity, we tested the baseline methods and our KWFM on the grayscale images (e.g., ‘C.man’ and

‘Lena’ ) with noise deviation 30. Note that the source code of BM3D [7] was written in the C programming language, whereas

the source programs of SAIST [9] , DDID2 [22] , WNNM [15] and DnCNN-S [36] were in Matlab. Table 6 shows the comparison

of computation times between these denoising methods, which shows that our KWFM algorithm without code optimization
7 https://github.com/zhangyongqin/KWFM . 

https://github.com/zhangyongqin/KWFM
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Fig. 6. Visual comparison of the denoised results obtained by BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] , DnCNN-S [36] and our KWFM for the grayscale 

image ‘Boats’ corrupted by the Gaussian noise with standard deviation 50. As there are discrepancies between test images and training images, our KWFM 

recovers more detailed structures and has better denoising results than competing methods, even DnCNN-S [36] , for one grayscale test image from the 

dataset ‘Set11’. 

Fig. 7. Visual comparison of the denoised results obtained by BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] , DnCNN-S [36] and our KWFM for the grayscale 

image ‘Hill’ corrupted by the Gaussian noise with standard deviation 70. As there are discrepancies between test images and training images, our KWFM 

recovers more detailed structures and has better denoising results than competing methods, even DnCNN-S [36] , for another grayscale test image from the 

dataset ‘Set11’. 

 

 

 

 

takes longer than BM3D [7] , SAIST [9] and DnCNN-S [36] , but is faster than DDID2 [22] and WNNM [15] . Similar results

were obtained for other images and noise levels. 

We have also carried out theoretical analysis of the computational complexity of the proposed method. Suppose that

there are n patches of size p × p for an input M × N image. The computational complexity of the proposed method

mainly consists of two parts: OLRA and KWF. In the first part, the block-matching search needs O 

(
n W 

2 
(

p 2 + Q 

))
op-
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Fig. 8. Visual comparison of the denoised results obtained by BM3D [7] , SAIST [9] , DDID2 [22] , WNNM [15] , DnCNN-S [36] and our KWFM for the grayscale 

image ‘House’ corrupted by the Gaussian noise with standard deviation 70. As there are discrepancies between test images and training images, our KWFM 

recovers more detailed structures and has better denoising results than competing methods, even DnCNN-S [36] , for another grayscale test image from the 

dataset ‘Set11’. 

Table 5 

PSNR (dB) and SSIM results of BM3D [7] , DDID2 [22] , DnCNN-S [36] and our KWFM separately applied to the color image dataset ‘Set12’ with variant noise 

levels. The best results are highlighted in boldface. 

Images 10 30 50 70 

[7] [22] [36] KWFM [7] [22] [36] KWFM [7] [22] [36] KWFM [7] [22] [36] KWFM 

Baboon 30.64 30.66 28.63 30.78 25.14 25.50 25.09 25.45 23.15 23.46 23.30 23.43 21.97 22.16 22.20 22.19 

.9105 .9178 .8695 .9164 .7568 .7719 .7545 .7751 .6437 .6629 .6662 .6799 .5585 .5683 .5976 .6024 

F16 36.68 36.59 36.41 36.88 31.93 32.31 31.44 32.41 29.79 30.04 29.19 30.27 28.28 28.38 27.76 28.83 

.9359 .9354 .9349 .9370 .8825 .8847 .8875 .8897 .8490 .8429 .8531 .8547 .8193 .8026 .8252 .8324 

House 36.23 35.83 34.98 36.38 32.34 32.26 31.10 32.65 30.47 30.36 29.05 31.05 29.02 28.79 27.85 29.94 

.9107 .9104 .8943 .9164 .8336 .8334 .8284 .8399 .8015 .7930 .8031 .8086 .7758 .7563 .7829 .7956 

Lake 32.31 32.34 30.99 32.60 28.02 28.37 27.88 28.32 26.28 26.59 26.21 26.62 25.13 25.32 25.08 25.45 

.8666 .8739 .8311 .8849 .7624 .7660 .7616 .7665 .7124 .7120 .7167 .7201 .6760 .6674 .6819 .6 86 8 

Lena 35.22 35.19 34.66 35.27 31.59 31.86 31.54 31.84 29.88 30.04 29.70 30.12 28.63 28.66 28.50 28.96 

.8863 .8877 .8754 .8878 .8241 .8291 .8236 .8290 .7894 .7887 .7875 .7940 .7591 .7516 .7605 .7702 

Peppers 33.78 33.87 32.99 33.94 30.61 30.90 30.18 30.72 28.93 29.31 28.36 29.21 27.66 28.02 27.27 28.12 

.8408 .8470 .8179 .8501 .7659 .7732 .7667 .7650 .7320 .7364 .7307 .7356 .7040 .7040 .7046 .7159 

Splash 37.56 37.58 37.08 37.70 34.30 34.48 33.26 34.68 32.37 32.65 31.30 33.19 30.79 31.08 30.08 32.03 

.9040 .9051 .9027 .9049 .8591 .8616 .8551 .8627 .8366 .8333 .8298 .8461 .8150 .8036 .8125 .8361 

Tiffany 35.49 35.84 34.43 35.61 31.56 32.00 30.79 31.93 29.83 30.05 28.99 30.23 28.53 28.73 27.90 29.14 

.8928 .9004 .8806 .8934 .8199 .8280 .8200 .8277 .7839 .7821 .7816 .7901 .7560 .7445 .7561 .7692 

Kodim01 34.71 34.43 34.99 34.90 28.14 28.36 28.80 28.72 25.86 25.94 26.47 26.39 24.60 24.43 25.14 25.06 

.9517 .9515 .9551 .9548 .8087 .8192 .8402 .8353 .7014 .7035 .7495 .7363 .6307 .6101 .6841 .6617 

Kodim02 36.56 36.63 36.98 36.97 31.72 31.76 32.18 32.08 29.84 29.82 30.23 30.21 28.62 28.59 29.05 29.20 

.9133 .9184 .9229 .9241 .8021 .7983 .8196 .8125 .7471 .7357 .7617 .7503 .7131 .6939 .7270 .7189 

Kodim03 39.05 38.87 39.23 39.27 33.58 33.85 34.00 34.13 31.34 31.32 31.55 31.79 30.00 29.72 30.21 30.34 

.9564 .9564 .9572 .9578 .8911 .8953 .9011 .9034 .8440 .8349 .8536 .8557 .8085 .7849 .8203 .8201 

Kodim12 37.84 37.69 38.14 38.09 32.96 32.87 33.33 33.27 30.98 30.80 31.22 31.22 29.78 29.50 30.00 30.02 

.9323 .9332 .9376 .9368 .8471 .8390 .8566 .8512 .7956 .7801 .8030 .7925 .7628 .7394 .7717 .7611 

Average 35.51 35.46 34.96 35.70 30.99 31.21 30.80 31.35 29.06 29.20 28.80 29.48 27.75 27.78 27.59 28.27 

.9084 .9115 .8983 .9137 .8211 .8250 .8262 .8298 .7697 .7671 .7780 .7803 .7316 .7189 .7437 .7475 

Table 6 

Comparison of computational complexity (unit: seconds). 

Size BM3D [7] SAIST [9] DDID2 [22] WNNM [15] DnCNN-S [36] KWFM 

256 × 256 1.48 40.42 302.69 438.80 31.91 201.58 

512 × 512 4.24 146.08 1166.61 1807.29 138.01 855.35 
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Fig. 9. Visual comparison of the denoised results obtained by BM3D [7] , DDID2 [22] , DnCNN-S [36] and our KWFM for two test examples from the color 

image database ‘CBSD68’. These two images are separately corrupted by the Gaussian noise with standard deviation 30 and 50. As test images are consistent 

with the patterns of training images, DnCNN-S [36] recovers more detailed structures and has better denoising results than our KWFM for color test images 

from the dataset ‘CBSD68’. Our KWFM is the second best and approaches to deep learning based methods including DnCNN-S [36] . 

Fig. 10. Visual comparison of the denoised results obtained by BM3D [7] , DDID2 [22] , DnCNN-S [36] and our KWFM for test color images ‘Tiffany’ and 

‘House’ . These two images are separately corrupted by the Gaussian noise with standard deviation 50 and 70. As there are discrepancies between test 

images and training images, our KWFM recovers more detailed structures and has better denoising results than competing methods, even DnCNN-S [36] , 

for color test images from the dataset ‘Set12’. 

 

 

erations, while the reference image update needs O 

(
n 
(

p 4 Q + Q 

3 
))

. Therefore, the number of operations of OLRA is

O 

(
nT 

(
p 4 Q + Q 

3 + p 2 W 

2 + W 

2 Q 

))
, where T is the number of iterations. In the second part, KWF approximately costs

O 

(
n L 2 log L 2 

)
. Therefore, the total computational complexity of the proposed method is 

( (
4 3 2 2 2 

)
2 2 

)

O nT p Q + Q + p W + W Q + n L log L . (16) 
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4. Discussion 

To recover complex image structures, we propose the kernel Wiener filtering model for image denoising by introducing

the shape-aware kernel function, and estimate the reference image of kernel Wiener filtering by OLRA. Our model consists of

two subproblems, where we deduce a closed-form solution of the optimal KWF and a convergent iterative solution of nearly

unbiased low-rank estimator for the reference images, which distinguish our KWFM from the existing methods [4,7,9,21,22] .

In fact, the first stage of our KWFM is an improved version of SVT [4,9] , and usually achieves higher estimation accuracy

than SVT [4,9] for the low-rank approximation. The second stage is a generalized form of CWF in BM3D [7] . Essentially, CWF

is a special case of our KWF when the elements of the kernel function are all ones. 

DnCNN-S [36] often achieves better results than our KWFM for test images in the dataset ‘BSD68’ or its color version

because it uses the remaining 432 images of Berkeley Segmentation Dataset ‘BSDS500’ 8 as the training images. This implies

that DnCNN-S [36] can produce excellent results when the test images are consistent with the patterns of the training im-

ages. On the other hand, our KWFM generally has better results than DnCNN-S [36] for test images from the datasets ‘Set11’

and ‘Set12’ because these test images deviate from the patterns of the training images used by DnCNN-S [36] . Considering

the balance between the denoising performance and the computational complexity, our KWFM is effective and robust for

noise reduction and often superior to the current state-of-the-art methods including DnCNN-S [36] in certain cases. 

5. Conclusions 

In this paper, we have presented a novel kernel Wiener filtering model for image denoising. As an extended version of

conventional Wiener filtering, a kernel Wiener filtering method is designed by introducing a shape-aware kernel function,

where its reference image is estimated by an optimized low-rank approximation approach. By breaking this model into two

subproblems, we separately derive an optimal kernel Wiener filter in a closed-form solution and a nearly unbiased low-rank

estimate of the reference images in a convergent iterative solution. This optimized low-rank estimation based on eigen-

value thresholding achieves higher estimation accuracy than conventional low-rank approximation based on singular value

thresholding. Experimental results demonstrated that the proposed algorithm can faithfully recover image details with good

robustness while removing noise effectively, and generally outperform the current state-of-the-art methods both visually

and quantitatively. In addition, due to the simplicity and superior performance of kernel Wiener filtering, our method can

be easily combined with existing denoising methods for further improving the performance. 
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Appendix A. Eigenvalues of Covariance Matrix 

According to the noisy image observation G = O + ς, we deduce the relationship between the eigenvalues of the covari-

ance matrix for the noisy observation G ∈ R 

p 2 ×Q and those for its latent clean image O ∈ R 

p 2 ×Q . For convenience, let �G and

�O denote diagonal matrices form by the eigenvalues of G and O , respectively. ς is assumed to follow a Gaussian distribu-

tion with zero mean and variance σ 2 
ς . If the noise ς is independently identically distributed (i.i.d.), then �2 

G 
� �2 

O 
+ Qσ 2 

ς . 

Proof. The eigenvalue decomposition of the covariance matrix GG 

′ can be expressed as 

G G 

′ = U �2 
G U 

′ � O O 

′ + ς ς 

′ 

� U �2 
O U 

′ + Qσ 2 
ς I = U 

(
�2 

O + Qσ 2 
ς 

)
U 

′ , (A.1)

where U denotes the eigenvectors, and I is an identity matrix. This completes the proof. �
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